Efficient parameter estimation for RNA secondary structure prediction
نویسندگان
چکیده
MOTIVATION Accurate prediction of RNA secondary structure from the base sequence is an unsolved computational challenge. The accuracy of predictions made by free energy minimization is limited by the quality of the energy parameters in the underlying free energy model. The most widely used model, the Turner99 model, has hundreds of parameters, and so a robust parameter estimation scheme should efficiently handle large data sets with thousands of structures. Moreover, the estimation scheme should also be trained using available experimental free energy data in addition to structural data. RESULTS In this work, we present constraint generation (CG), the first computational approach to RNA free energy parameter estimation that can be efficiently trained on large sets of structural as well as thermodynamic data. Our CG approach employs a novel iterative scheme, whereby the energy values are first computed as the solution to a constrained optimization problem. Then the newly computed energy parameters are used to update the constraints on the optimization function, so as to better optimize the energy parameters in the next iteration. Using our method on biologically sound data, we obtain revised parameters for the Turner99 energy model. We show that by using our new parameters, we obtain significant improvements in prediction accuracy over current state of-the-art methods. AVAILABILITY Our CG implementation is available at http://www.rnasoft.ca/CG/.
منابع مشابه
Computational approaches for RNA energy parameter estimation.
Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy ...
متن کاملA max-margin model for efficient simultaneous alignment and folding of RNA sequences
MOTIVATION The need for accurate and efficient tools for computational RNA structure analysis has become increasingly apparent over the last several years: RNA folding algorithms underlie numerous applications in bioinformatics, ranging from microarray probe selection to de novo non-coding RNA gene prediction. In this work, we present RAF (RNA Alignment and Folding), an efficient algorithm for ...
متن کاملPreRkTAG: Prediction of RNA Knotted Structures Using Tree Adjoining Grammars
Background: RNA molecules play many important regulatory, catalytic and structural <span style="font-variant: normal; font-style: norma...
متن کاملA sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction
Nearest neighbor parameters for estimating the folding energy changes of RNA secondary structures are used in structure prediction and analysis. Despite their widespread application, a comprehensive analysis of the impact of each parameter on the precision of calculations had not been conducted. To identify the parameters with greatest impact, a sensitivity analysis was performed on the 291 par...
متن کاملRNA secondary structure prediction using stochastic context-free grammars and evolutionary history
MOTIVATION Many computerized methods for RNA secondary structure prediction have been developed. Few of these methods, however, employ an evolutionary model, thus relevant information is often left out from the structure determination. This paper introduces a method which incorporates evolutionary history into RNA secondary structure prediction. The method reported here is based on stochastic c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2007